Bellman-Ford algorithm solves the single-source shortest-path problem in the general case in which edges of a given digraph can have negative weight as long as G contains no negative cycles.
GIVEN DIGRAPH
START BY SOURCE NODE(0)
FINALLY AFTER N-1 STEPS
JAVA PROGRAM TO IMPLEMENT BELLMAN-FORD ALGORITHM
import java.io.*;
import java.util.*;
public class BellmanFord {
LinkedList<Edge> edges;
int d[];
int n,e,s;
final int INFINITY=999;
private static class Edge {
int u,v,w;
public Edge(int a, int b, int c) {
u=a;
v=b;
w=c;
}
}
BellmanFord() throws IOException {
int item;
edges=new LinkedList<Edge>();
DataInputStream in= new DataInputStream(System.in);
System.out.print("Enter number of vertices ");
n=Integer.parseInt(in.readLine());
System.out.println("Cost Matrix");
for(int i=0;i<n;i++)
for(int j=0;j<n;j++) {
item=Integer.parseInt(in.readLine());
if(item!=0)
edges.add(new Edge(i,j,item));
}
e=edges.size();
d=new int[n];
System.out.print("Enter the source vertex ");
s=Integer.parseInt(in.readLine());
}
void relax() {
int i,j;
for(i=0;i<n;++i)
d[i]=INFINITY;;
d[s] = 0;
for (i = 0; i < n - 1; ++i)
for (j = 0; j < e; ++j)
if (d[edges.get(j).u] + edges.get(j).w < d[edges.get(j).v])
d[edges.get(j).v] = d[edges.get(j).u] + edges.get(j).w;
}
boolean cycle() {
int j;
for (j = 0; j < e; ++j)
if (d[edges.get(j).u] + edges.get(j).w < d[edges.get(j).v])
return false;
return true;
}
public static void main(String args[]) throws IOException {
BellmanFord r=new BellmanFord();
r.relax();
if(r.cycle())
for(int i=0;i<r.n;i++)
System.out.println(r.s+" ==> "+r.d[i]);
else
System.out.println(" There is a nagative edge cycle ");
}
}
No comments:
Post a Comment